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Molecular and genetic evidence accumulated dur-
ing the past 20 years in the field of developmental
biology indicates that different animals possess
many common genetic systems for embryonic pat-
terning. In this review we describe the conserved
functions of such developmental patterning genes
and their relevance for human pathological condi-
tions. Special attention is given to the Hox genetic
system, involved in establishing cell identities
along the anterior-posterior axis of all higher meta-
zoans. We also describe other conserved genetic sys-
tems, such as the involvement of Pax6 genes in eye
development and the role of Nkx2.5-type proteins in
heart development. Finally, we outline some fasci-
nating problems at the forefront of the studies of
developmental patterning genes and show how
knowledge obtained from model genetic organisms
such as Drosophila helps to explain normal human
morphogenesis and the genetic basis of some birth
defects. © 2000 Academic Press

Key Words: Hox; homeotic; organ development;
Pax; tinman; axial patterning; human malforma-
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All metazoans, including the writers and the read-
ers of these lines, share a moment in their lifetime
when they are nothing more than a single-cell zy-
gote. It is remarkable to think about the astonishing
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variety of life forms and the intricate details of adult
body plans that arise from this unicellular stage
through the process of embryonic development. Ex-
citing recent discoveries indicate that despite their
variations in shape and complexity, animals are
more similar to each other than meets the eye. The
detection of covert similarity in diverse body plans
has resulted from the great advances made in the
past 20 years of developmental genetic research. For
example, a series of investigations have shown that
all bilateral animals, including humans, possess a
common genetic mechanism for patterning the an-
terior/posterior (A/P) axis involving the Hox cluster
genes (1–3, reviewed in 4,5).

Besides a common axial patterning system, other
general architectural features in both vertebrates
and invertebrates also appear to be controlled by
common genetic mechanisms. Humans and insects
possess organs of very diverse appearance serving
similar functions, such as eyes for vision and hearts
for blood circulation. Traditional views have held
that these structures are analogous, i.e., conver-
gently evolved, and are therefore likely to be speci-
fied by different genetic patterning systems (6–8).
However, new evidence reviewed in this paper sug-
gests that we now have good reason to call these
organs homologous at the level of the genes that
control their formation. Therefore, knowledge about
the genes that control early development in human

embryos can be obtained by the detailed study of
“model genetic animals,” such as nematode worms,
fruit flies, and mice.
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This review focuses on several cases of such con-
servation, drawing from what we know about the
function of Hox genes and other “master control
genes,” to shed light on the continuity of develop-
mental gene function from Planaria to Homo. We
discuss the directions of current investigations, im-
plications for human genetics and disease, as well as
some fascinating but yet unanswered questions at
the forefront of the Hox research.

The Role of Hox Genes in the Determination
of Segment Identity along the A/P Axis:

From Drosophila to Humans

Homeosis was originally described by Bateson as
the phenomenon in which one element of a segmen-
tally repeated array of organismal structures is
transformed toward the identity of another (9). The
genetic basis for these transformations of the body
plan was unknown until seminal studies were done
on homeotic selector genes (now often referred to as
Hox genes). Mutations in such genes often result in
homeotic transformations of the body plan in one or
a few segments. A large and systematic collection of
homeotic mutations was assembled in Drosophila
(10,11). A well-known homeotic gene Ultrabithorax
(Ubx) was originally identified by mutations that
transform halteres (small club-like balancing organs
of flies) into an extra pair of wings. Another classical
homeotic phenotype is produced by dominant muta-
tions in the Antennapedia (Antp) gene, which trans-
form the antenna on the head of a fly into an extra
thoracic leg.

Molecular analysis of the genomes of other organ-
isms has revealed that all bilateral animals, includ-
ing humans, have multiple Hox genes (Fig. 1). The
proteins made from these genes all contain a similar
60-amino acid motif termed the homeodomain. Ho-
meodomain proteins such as those of the Hox-type
are transcription factors and exert their function
through activation and repression of multiple target
genes. Interestingly, the Hox genes are arranged so
that the position and order of homologous genes
(e.g., Deformed (Dfd) of Drosophila and HOXD4 of
humans) are preserved in the Hox clusters of differ-
ent animals. The functional significance of the con-
served gene order in these clusters is still poorly
understood. However, a likely reason for the main-
tenance of the clustered arrangement for more than

86 VERAKSA, DEL CA
500 million years is that different genes in the clus-
ter are controlled by the same DNA regulatory re-
gions. Therefore, it can be argued that the cluster
functions as a single, complicated genetic unit (12–
14). In contrast to the single Hox cluster in Drosoph-
ila and most other invertebrates, humans and other
vertebrates have four clusters of Hox genes (HOXA,
HOXB, HOXC, and HOXD), that likely evolved by
two successive duplications of a primordial cluster.

In addition to conservation of primary sequence
and chromosomal organization, Hox gene expression
patterns are also conserved in diverse animals. Per-
sistent expression of Hox genes in discrete zones on
the A/P axis is required to remind embryonic cells of
their axial position long after the initial genetic cues
are gone. Hox expression zones have sharp anterior
boundaries, with less well-defined posterior bound-
aries. The order of anterior boundaries of Hox ex-
pression along the A/P axis of the embryo and the
timing of activation during development are gener-
ally colinear with the order of the genes on the
chromosome (15). It is interesting to note that the
same Hox gene can have a slightly offset boundary of
expression in different tissues, which is especially
true for vertebrate embryos (Fig. 1). Within the
same tissue, however, the relative expression
boundaries of different Hox cluster members are
preserved.

Conservation of Hox protein sequence and expres-
sion pattern suggested that vertebrate Hox genes
control axial patterning in a manner similar to that
in flies (16). This was confirmed when mouse Hox
mutants were obtained and homeotic transforma-
tions were found in the skeletons of mutant em-
bryos. For example, in Hoxc-8 homozygous mutant
mice the most obvious transformations were the at-
tachment of the 8th pair of ribs to the sternum and
the appearance of a 14th pair of ribs on the 1st
lumbar vertebra (17).

Studies in both Drosophila and mouse show that
homeotic transformations in Hox loss-of-function
mutants usually cause the affected body structures
to resemble more anterior ones. Conversely, many
gain-of-function mutant phenotypes are due to ec-
topic expression of more posterior Hox genes, which
are capable of “canceling” the function of more an-
terior ones and specifying extra posterior structures.
For example, when Drosophila Abd-A protein, which
is normally confined to the posterior-most abdomi-
nal region of the fly embryo, is provided ubiquitously
under the control of a heat-shock promoter, all head

, AND MCGINNIS
and thoracic segments attain a more posterior
(abdominal-like) identity. The ability of a more pos-
terior Hox gene to impose its function on more



FIG. 1. Conservation of genomic organization and expression patterns of Hox genes (modified from 4,18). The lower half of the
figure depicts the four clusters of Hox genes in mammals and the expression patterns (inferred from mouse expression studies) of
the orthologous genes in a stage 19 human embryo. The colored fields in the expression schematic depict the anteriormost domains
of expression. In actuality, the posterior boundaries of the expression domains overlap in more caudal regions. Note a shift of the
anterior expression boundaries between the nervous system and the segmented mesoderm, which nevertheless preserves the
relative order of Hox gene expression. Several of the posterior HOXA and HOXD genes are also expressed in the limb primordia; they
are collectively indicated by the yellow color. The upper half of the figure shows Drosophila Hox genes, aligned with their
mammalian orthologs, and corresponding expression patterns in the adult fly (the Drosophila Hox cluster is split into two parts,
located on the same chromosome). Recent data suggest that a minimum number of Hox genes present in a common ancestor of all
bilateral animals is seven (141). Such a hypothetical ancestral Hox cluster is presented in the middle, with arrows indicating the
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predicted evolutionary origins of insect and mammalian Hox genes. For some of the central and posterior Hox genes, it is difficult
to define precise homology relationships, and groups of genes with equal homology to an ancestral gene are indicated with brackets.
Drosophila bcd and zen genes are not members of the Hox A/P patterning system. They represent fast-evolving insect homeodomain
genes (141).
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8 MPO
anterior genes is called posterior prevalence, or phe-
notypic suppression.

Human Phenotypes Associated with
Mutations in Hox Genes

Despite the scarcity of available mutations in hu-
man and mouse Hox genes, it is possible to make a
few generalizations about the observed effects of
such genetic lesions. In many cases, mutations in-
volving one or several mouse Hox genes do result in
homeotic transformations, but they are also associ-
ated with loss of axial structures and organs and
other nonhomeotic malformations (18). Part of the
reason for the highly complex mutant phenotypes is
that Hox genes are involved in an elaborate system
of cross-regulatory interactions and redundant func-
tions.

Hox genes are not required solely for the proper
development of the rostro-caudal main body axis. In
mammals, the posterior-most members of the
HOXC, HOXD, and HOXA clusters (HOXC9-13,
HOXD9-13, and HOXA11-13, respectively) are ex-

ressed in the developing limb buds (reviewed in 15)
Fig. 1). Many of the same genes from the HOXD and
OXA clusters are also expressed in external geni-

ourinary structures (19–21). The limb and genital
efects observed in mice and humans that possess
utations in the posterior Hox genes indicate that
ox expression is crucial for the formation of these
ody parts. Table 1 summarizes the known muta-
ions in human Hox genes and their associated phe-
otypes.
Several groups have reported heterozygous and

omozygous synpolydactyly phenotypes that coseg-
egated with an expansion in a 15-residue polyala-
ine stretch in exon 1 of the HOXD13 gene (22–24).
significant increase of the penetrance and severity

f the phenotype correlated with increasing expan-
ion size. Interestingly, the family with the largest
xpansion included affected males with hypospa-
ias, which is not a feature of the classic synpoly-
actyly (SPD), but correlates with the genital ex-
ression of the gene in mammals. Correlation
etween the severity of the phenotype and expan-
ion size suggests that the added alanines cause
ain-of-function mutations in the HOXD13 protein.
his hypothesis is further supported by the fact that
he synpolydactyly-homolog (spdh), a spontaneous
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ouse mutation carrying a similar expansion (25),
as a much more severe phenotype than the com-
lete absence of Hoxd-13 function (26).

t
c
e

Two different intragenic HOXD13 deletions that
esulted in premature stop codons have been asso-
iated with a phenotype with some features of SPD
nd a novel foot malformation (27). Such truncations
ould eliminate the function of the HOXD13 pro-

ein, which suggested that this SPD phenotypic vari-
nt was due to haploinsufficiency for the HOXD13
ene. Finally, monodactylous limbs and abnormal
enitalia were observed in two unrelated patients
hat were heterozygous for deletions spanning the
hole HOXD cluster and nearby loci (28). The in-
olvement of nearby genes in the monodactylous
henotype is suggested by the fact that less severe
henotypes are seen in mice with deletions spanning
oxd9–13 (26,29).
Mutations in the posterior genes of the HOXA

luster also result in abnormal limb and genital
evelopment. The classic hand-foot-genital (HFG)
yndrome is associated with heterozygosity for a
onsense mutation in the homeodomain of HOXA13
30). This nonsense mutation is predicted to gener-
te a truncated protein that would be unable to bind
NA, invoking haploinsufficiency as the most likely
echanism leading to the phenotype. The impor-

ance of a diploid dose of the HOXA genes is further
uggested by the phenotype of a patient with a large
eletion spanning the HOXA cluster. This patient
ossessed features of the HFG syndrome and other
nomalies, possibly caused by the deficiency of other
embers of the cluster (31). An apparent dominant-

egative phenotype is observed in the spontaneous
ouse mutant hypodactyly (Hd), with a 50 bp dele-

ion in the coding sequence of Hoxa-13. Hd mice
ave more severe limb defects than the Hoxa-13 null
utant (30,32). In another case, the expansion of a

olyalanine stretch in the HOXA13 protein has been
ssociated with a dominant HFG syndrome that in-
ludes an atypical metacarpophalangeal profile and
enitourinary anomalies (33). Expansions and con-
ractions of poly-amino acid tracts might be gener-
ted from unequal crossing over and be a common
utational mechanism for Hox genes (34).

“Master Control Genes” for Eyes and Hearts

The Hox genes are only one class of patterning
enes that have similar developmental functions in
imple experimental animals and humans. Another
lass consists of those genes that primarily control

, AND MCGINNIS
he development of one organ. The term “master
ontrol gene” has been coined to denote this class of
mbryonic patterning genes (35,36). Interestingly,
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some of these “master control proteins” also contain
homeobox domains that are distantly related to the
original homeobox signature found in Hox transcrip-
tion factors, while others are transcription factors of
other types.

One of the well-studied master control genes is
required for the specification of a blood pumping
organ in a wide variety of animals whose “hearts”
are of incredibly diverse shapes and sizes. This work
began with the study of a Drosophila homeobox gene
that was expressed in both dorsal mesoderm and the
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dorsal vessel (insect equivalent of the heart) (Fig.
2A). The dorsal vessel consists of a tubular muscle
that circulates hemolymph within the open body

s
N
e

cavity (37, reviewed in 38). This gene was named
tinman, after the character in the “Wizard of Oz”
(39) who desires a heart. Mutations in tinman re-
sulted in dead larvae that were missing the dorsal
vessel, as well as other dorsal mesoderm derivatives
(40,41).

Molecular analysis of the mouse genome revealed
that mice have tinman-like genes, one of which is
called Nkx2.5 or Csx. The Nkx2.5/Csx gene is ex-
pressed in the fetal heart primordia (42,43)—a pat-
tern that is strikingly similar to tinman gene expres-

1
and Associated Phenotypes

Observed phenotypes References

synpolydactyly (SPD)
fingers 3–4 and toes 4–5, with polydactyly
aneous web between digits
PD
and feet

ft tissue syndactyly of all four limbs
soaxial, and postaxial polydactyly of

lar shape of carpal, metacarpal, and
l bones
tarsal fusions
al phalangeal pattern

s

(22–24)

of SPD
polydactyly involving metatarsals 1–2 and

(27)

zeugopod with radial appearance
ith biphalangeal digit and absence of

cation in four limbs
ale external genitalia and cryptorchidism

(28)

ital (HFG) syndrome
and feet, short great toes, abnormal

tacarpal and metatarsal, short 5th fingers,
tarsal fusions, small pointed distal

f 1st toe
uct fusion (bicornuate or didelphic uterus)
rethral opening and displaced urethral
bladder wall

s

(30)

e with atypical metacarpophalangeal

anomalies

(33)

e
al insufficiency
tus botalli

(31)
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ion in Drosophila. Targeted mutation of Csx/
kx2.5 results in embryonic lethality, and

mbryonic heart development is arrested at the ini-
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d
h (right)
f

tial stage of heart looping (44). There is also evi-
dence from human genetics indicating that the hu-
man NKX2-5 gene (localized to chromosome 5q35) is
required for normal heart morphogenesis. Several
cases of familial congenital heart disease with de-

FIG. 2. Conservation of developmental patterning mechanism
representation of an early mammalian embryo (left) and a Drosop
of the mammalian Nkx2-5 protein in the mesodermal cells that w
in lateral mesoderm that will form the dorsal vessel, an organ pe
these genes result in abnormal heart morphogenesis. Nkx2-5 and
ancient determinants of heart and lateral mesoderm. (B) Left pan
the developing eye. Pax6 is concentrated in the retina and the lens
s also expressed in the eye primordia (middle). Loss-of-funct
evelopment, and weak mutant alleles of eyeless result in loss
omeodomain signatures and are found in all higher metazoans
ormation since the early origins of all bilateral animals.
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fects in the morphology of the atrial septum and in
atrioventricular conduction were associated with
both haploinsufficiency and gain-of-function muta-
tions in the NKX2-5 gene (45). These observations
led to a conclusion that the Csx/NKX2-5/Tinman-
like proteins are ancestral determinants of heart
and surrounding visceral mesoderm (Fig. 2A). Re-
cent data indicate that a pathway controlling early

lved in formation of the heart and eye primordia. (A) Schematic
mbryo (middle). The blue color denotes the domain of expression
rise to the heart. A homologous fly protein, Tinman, is expressed
ng the blood-pumping function in insects. Mutations in either of
an share an NK-type homeodomain (right) and are thought to be
ws the domains of expression of the mammalian Pax6 protein in
ax6-like protein in Drosophila, encoded in the gene called eyeless,
tations in Pax6 are associated with syndromes affecting eye
s in adult flies. Pax6-like proteins contain paired domain and
. Pax6-type transcriptional regulators have been involved in eye
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heart development, involving several signaling mol-
ecules and transcription factors, is similar between
Drosophila and vertebrates (38,46,47). Even though
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the morphologies of insect and mammalian hearts
are dramatically different, the underlying genetic
machinery for the specification of a mesodermal
zone that develops into a blood-pumping organ ap-
pears to be well conserved.

In addition to heart primordia, the mesodermal
layer of the embryo gives rise to muscle, bone, and
connective tissues. While the earliest events in spec-
ification of the mesoderm vary in different animal
groups, one common denominator has been found in
the development of skeletal muscle cells: a MADS
box gene, MEF2 (D-MEF2 in the fly), is an early
marker of skeletal muscle lineage in both insects
and vertebrates (48). In vertebrates, MEF2 en-
hances and stabilizes the expression of such well-
known muscle-specific genes as the basic-helix-loop-
helix homologs Myf5, MyoD, MRF4, and Myogenin

FIG. 3. A common ancestor of all bilateral animals possessed
systems. This schematic reconstruction of an Urbilaterian (a hypo
is only loosely based on, an upside-down drawing of a lobster ma
common to all extant bilaterally symmetrical metazoans, were al
accompanied by conserved regulatory proteins involved in their fo
Urbilaterian animal gave rise to all major metazoan adult bod
individual genes.

CONSERVED DEV
(49). In Drosophila, mesoderm fates are initially
controlled by Twist and Snail proteins, and Twist
directly activates D-MEF2 (48,50). D-MEF2 and its
vertebrate homologs are required for the completion
of myogenesis in all muscles (49,51). Key features of
this system have been preserved through millions of
years of evolution. Such features include the conser-
vation of the MEF2 MADS domain, which mediates
sequence-specific DNA binding, and conservation of
DNA target sites in regulatory regions of the mus-
cle-specific genes (48).

Another example of conservation of developmen-
tal patterning pathways was shown in a series of
experiments that revealed a striking similarity in
the mechanisms underlying the formation of eyes
and photoreceptor cells in many different taxa. For
most animals, the visual system is crucial for sur-
vival, and indeed it has been argued that primate
brains receive most of their information through the
eyes (52). As is often the case in genetics, relevant

lete set of genetic functions involved in formation of major organ
l common ancestor of bilateral animals) (65) was inspired by, but
eoffroy Saint-Hilaire (142). Ancient genetic patterning systems,

present in this creature (74). Major organ systems are indicated,
on (shown in bold). The bottom part of the figure shows that this
s, including chordates. See text for references concerning the
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mutations proved crucial for unraveling the molec-
ular pathways underlying eye development. Two
such mutations have been known for quite some
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time: the Aniridia defect in humans (53–55, re-
iewed in 56), and the Small eye (Sey) mutation in
ice and rats (57–59). The human Aniridia syn-

rome is characterized by a reduction in eye size and
he absence of the iris in heterozygotes. A similar
efect is seen in mice that are heterozygous for the
mall eye mutation. Mice homozygous for Small eye
ompletely lack eyes and die in utero.
Molecular analysis revealed that the same gene,

ax6, was affected in both the Aniridia and the Small
ye syndromes. Pax6 belongs to a paired box/homeodo-
ain family of transcriptional regulators (Fig. 2B). As

xpected, the Pax6 protein is abundantly expressed in
he eye from the earliest stages until the end of eye
orphogenesis: initially, in the optic sulcus, and sub-

equently in the eye vesicle, lens, retina, and finally in
he cornea (53,58,59). In Drosophila, the genes eyeless
ey) and twin of eyeless (toy) encode proteins that are
omologs of Pax6 (the eyeless gene has undergone du-
lication during insect evolution, placing eyeless under
direct control of toy (see 60 for details). Both ey and

oy are expressed at high levels in the cells that will
orm a photoreceptor field of the Drosophila eye, as
ell as in some other regions of the developing nervous

ystem. Weak mutations in eyeless lead to the reduc-
ion or complete loss of compound eyes, whereas strong
nes are lethal when homozygous (35,36)—phenotypes
imicking the defects observed in mice. Even more

triking was the observation that targeted expression
f the Drosophila eyeless or mouse Pax6 genes in var-
ous fly tissues led to the formation of ectopic eyes on
ings, legs, and antennae (36,60). Recently, misex-
ression of Pax6 has been shown to cause ectopic eye
ormation in vertebrates (61). These results demon-
trate that Pax6/eyeless genes are not only required
ut are sufficient to promote eye development, and
herefore have been called master control genes for eye
orphogenesis (Fig. 2B).
A traditional view maintained by generations of
orphologists, based on the drastic differences ob-

erved in eye development and structure in mam-
als, insects, and mollusks, holds that the eye organ

volved independently in different phyla (6). And
ndeed this is partly true, as the organization of the
rgan has diverged extensively in different animal
ineages. However, the current evidence indicates
hat a variety of modern animals specify fields of
hotoreceptor cells using the same Pax6 controls

2 VERAKSA, DEL CA
hat triggered the development of the ancestral
eye.” Recently, Pax6 homologs have been also iden-
ified in other triploblastic animals (e.g., flatworms,

s
p
t

ematodes), and even in Cnidarians (see 62 and
eferences therein). Deep conservation in the visual
ystem is further supported by the fact that all an-
mals use opsins as photoreceptor proteins (63).

As was mentioned for tinman/NKX2-5, pattern-
ng genes do not work in isolation, and additional
enetic circuitry beyond Pax6 appears to be con-
erved in different animals. In the fly, Ey activates
he expression of the genes for the nuclear proteins
ine oculis (So), Eyes absent (Eya), and Dachsund

Dac), all of which are also essential for eye devel-
pment. Vertebrate homologs of these proteins have
een identified (several Six, Eya, and Dach genes,
espectively). Remarkably, their expression pat-
erns, activation by Pax6, molecular interactions,
nd their role in eye and retinal development have
lso been conserved, further supporting the exis-
ence of a common pathway initiating the develop-
ent of the visual system. Dach maps to human

hromosome 13q21.3–22 and is a candidate gene
or postaxial polydactyly type A2 (PAPA2), consis-
ent with its additional expression in the limb pri-
ordia in both mice and flies (see 64 and references

herein).
Limitations of space prevent us from describing

ther apparent examples of genetic conservation of
nimal patterning systems, such as a common mech-
nism for dorsal/ventral (D/V) patterning involving
GF-b family members Dpp/BMP-4 and their inter-

acting ligands Sog/Chordin (65,66); recruitment of
the achaete-scute genes for the establishment of neu-
onal precursor cells (67); expression of the Distall-
ss (Dlx) genes in appendage primordia of many
etazoans (19); periodic expression of engrailed-re-

ated genes, suggesting that the bilateral ancestor of
ertebrates and insects might have used a common
enetic system to control metamerization (68); con-
ervation of genetic determinants for the anterior
orthodenticle/Otx and empty spiracles/Emx) and
osterior (caudal/Cdx) ends of the body (69–72);
eployment of the FGF pathway at multiple stages
f tracheal and lung branching (73); and others. The
xistence of common genetic pathways between dis-
antly related organisms suggests that the Urbilat-
rian (a common ancestor of all bilaterally symmet-
ical animals) was a sophisticated creature, with
any architectural and organ-specifying genetic

, AND MCGINNIS
ystems already in place (65,74). Figure 3 shows a
roposed diagram of that ancestral worm-like crea-
ure.
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Fascinating Questions Concerning the
Function of Hox Genes in Humans

In every organism, architectural patterning genes
are part of a complex developmental program en-
coded in that animal’s genome. They have to be
expressed in the right place at the right time, and
they have to exert specific and precise control over
their downstream target genes. Disrupting key in-
teractions at any of these levels can lead to abnor-
mal developmental decisions and ultimately result
in mutant phenotypes. The remainder of this paper
is devoted to analysis of several fascinating unsolved
problems that reside at different levels in the Hox
regulatory hierarchy, with an emphasis on implica-
tions for human pathology.

What are the mechanisms responsible for the
establishment and maintenance of HOX gene
expression in humans?

As mentioned before, persistent expression of Hox
proteins is required to maintain the identity of cells
along the A/P axis. From the studies in Drosophila,
it has been known for some time that generation of
stable Hox expression domains is a two-step process.
The initiation phase is controlled by the products of
the coordinate, gap and pair-rule genes that estab-
lish initial boundaries of Hox expression. In mam-
mals, little is known about the upstream mecha-
nisms for initiating Hox expression patterns. A few
documented examples include the requirement of a
zinc-finger transcription factor Krox20 for the acti-
vation of Hoxb-2 in the hindbrain of developing mice
(75), involvement of the Maf/b-zip protein Kreisler
in Hoxb-3 activation (76), and the role of retinoic
acid receptors (RAR proteins) in controlling the
boundaries of expression of multiple Hox genes (77).
Homologs of such Hox regulators in Drosophila are
apparently not directly involved in Hox gene activa-
tion or repression.

Recent experiments have provided more evidence
for conservation at the next, or maintenance, phase
of Hox expression. In both flies and mice the initial
zones of Hox expression are stabilized and main-
tained by a direct action of the proteins from the
Trithorax and Polycomb groups (TrxG and PcG, re-
spectively). Extensive characterization of PcG and
TrxG functions in Drosophila have shown that PcG
proteins are transcriptional repressors of a variety
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of genes, including Hox genes (Fig. 4). Conversely,
TrxG proteins are transcriptional activators on Hox
genes, as well as many other loci (reviewed in 78–
82). Many of these proteins have been highly con-
served in evolution, and a PcG protein has even been
found in plants (83).

In mouse embryos that are mutants for PcG genes
such as Bmi1 or eed, Hox genes are expressed in
more cells than in wild-type embryos, and such ex-
panded expression domains can cause homeotic

FIG. 4. The role of Polycomb (Pc) and Trithorax (Trx) group
genes in the maintenance of Hox expression patterns. (A) Effects
of Pc- and Trx-type mutations on domains of Hox gene expression.
Upper panel shows a schematic expression domain of a Hox
protein in a Drosophila embryo. In Polycomb group mutants
(middle), the domain of expression of the Hox gene is expanded.
Mutations in the Trithorax group genes (bottom) result in an
opposite effect: the maintenance circuit is disrupted, which re-
sults in diminished levels of expression of the Hox gene. (B) The
known molecular functions of TrxG and PcG proteins are accom-
plished in large multiprotein complexes that modify chromatin
structure around Hox and other genes. PcG proteins (and their
mammalian homologs, such as Eed, Bmi1, and others) are
thought to be general repressors, whereas TrxG proteins (e.g.,
human Hrx) are general activators of Hox gene expression.
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transformations (84–86) (Fig. 4A). Conversely, loss-
of-function mutants in mouse TrxG genes have di-
minished levels of Hox gene products, with pheno-
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types resembling mutations in the Hox genes
themselves (87,88). The biochemical functions of
TrxG and PcG members are achieved in multimeric
protein complexes (Fig. 4B). In some cases, these
complexes are known to maintain either an acti-
vated or repressed state of gene expression by reg-
ulating chromatin structure (89–91). In mammals,
TrxG and PcG members are involved in developmen-
tal pathways such as hematopoiesis and cell prolif-
eration in addition to their role in Hox gene tran-
scription on the A/P body axis (84,92,93). For
example, chromosomal rearrangements involving
the human HRX gene (the homolog of Drosophila
trithorax), known also as MLL or ALL1, often result
in leukemias, which may be in part due to the de-
regulation of Hox genes in blood cells (reviewed in
94,95). The mutant defects that result from muta-
tions in the Trx and Pc group genes have made them
the subject of intensive clinical and genetic research.

In addition to TrxG and PcG control, the mainte-
nance of Hox gene expression is facilitated by mul-
tiple auto- and cross-regulatory interactions. Thus,
Drosophila proteins Lab and Dfd maintain their
own transcription through autoactivation enhancers
(96–99), and similar autoactivation control has been
found in the murine homologs of these genes, Hoxb-1
and Hoxb-4 (13,100). Cross-regulatory relationships
play an equally important role in determination of
Hox transcription patterns (13).

What is the basis for the specificity of Hox
function?

Molecular geneticists have been puzzled by an
apparent paradox. On one hand, different Hox func-
tions result in unique morphologies, which suggests
a great deal of specificity in Hox action. On the other
hand, Hox protein monomers bind very similar DNA
sequences in vitro, and even when a slight prefer-
ence in such binding is observed, the resulting se-
quence recognition variations are not sufficient to
provide the necessary patterns of expression when
tested in vivo (101–103). To reconcile these appar-
ently contradictory observations, a hypothesis was
put forward that other proteins, called modulators
or cofactors, would assist Hox proteins in assem-
bling specific activation or repression complexes on
the regulatory elements of Hox target genes
(104,105).
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In recent years, ample experimental support has
been provided for the cofactor theory. One of the
best-studied examples is Drosophila Extradenticle
(Exd), a protein with a highly divergent homeodo-
main (106,107). Interestingly, embryos lacking all
exd function show loss of most segmental differenti-
ation, without any apparent changes in the expres-
sion patterns of Hox genes. This suggests that the
Exd protein works in parallel to or downstream of
Hox proteins, and might directly contribute to their
function (Fig. 5A). Indeed, Exd was found to form
stable heterodimer complexes on DNA with a vari-
ety of Hox proteins, and recently a crystal structure
of such a complex was determined (108–110). More-
over, Hox-Exd heterodimer binding sites have been
found in the regulatory regions of some known Hox
targets, and mutations in the target sequences that
abolish Hox-Exd binding often result in a loss of
reporter expression in vivo. Exd is highly homolo-
gous to mammalian Pbx1, originally identified as
the chromosome 1 partner of the t(1;19) transloca-
tion in human preB-cell ALL (111,112). Het-
erodimeric Hox-Pbx1 complexes are very similar in
structural and functional properties to the Drosoph-
ila Hox-Exd complexes, suggesting that Hox-Pbx in-
teractions are evolutionarily ancient (113). Onco-
genic effects of Pbx1 mutations have been attributed
to alterations in the function of mammalian Hox
proteins (112).

Cooperative binding of a Hox protein with Exd
enhances both the strength of interaction and the
specificity of interaction of the heterodimer with
some DNA sites (105,114,115). Recent evidence sug-
gests that Hox-Exd heterodimer binding is impor-
tant, but not sufficient to explain the specificity of
Hox function. First of all, other cofactors are in-
volved, such as the divergent homeodomain protein
Homothorax (Hth) that is related to mammalian
Meis1 and Prep1 proteins (116–121). Hth controls
nuclear localization of Exd, and also participates in
formation of heterotrimeric Hox-Exd-Hth complexes
on DNA (122,123). Also, recent analysis of several
natural Hox response elements has shown that real
enhancers are complex and contain multiple Hox
and cofactor binding sites, all of which contribute to
the overall output from that regulatory element
(99,109,124–127). In addition to determining Hox
binding specificity, cofactors can play a role in un-
covering a covert activation potential of the Hox
protein already bound to DNA (Fig. 5A) (109,125).
Leukemogenic phenotypes of mutations in Pbx1,
Meis1, and other cofactors suggest that precise con-
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trol of Hox activity is required for making correct
regulatory decisions in differentiating cells, such as
those involved in hematopoiesis (111,128). There is
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little doubt that the story of Hox cofactors and mod-
ulators will not be limited to interactions with Exd-
and Hth-type proteins, and evidence for additional
factors is gradually accumulating, primarily from
genetic screens in the fly (129–132).

Hox targets: Dozens or thousands?

The functions of Hox proteins and their cofactors
converge on Hox target genes. It has been recog-
nized for some time that the morphological features
that constitute the “identity” of a group of cells must
be determined by a variety of proteins responsible
for cell shape, movement, and differentiation. It is
these “realizator” genes that are thought to be down-
stream of Hox hierarchical pathways (133). A vari-
ety of approaches, including testing candidate genes
for Hox regulation, subtractive hybridization, and
chromatin immunoprecipitation, have been em-
ployed in the search for Hox targets (reviewed in

FIG. 5. Hox proteins function in association with cofactors
proteins are capable of specifically binding DNA (A, top). Howev
expression. Multiple inputs from cofactor and modulator proteins
of the Hox proteins, as well as to stabilize their interactions with
in bold, and their mammalian homologs are given in parentheses
unidentified, cofactors and modulators. (B) According to several re
regulation at multiple levels in their hierarchical pathways (arr
targets, many of which are known to be transcription factors. T
further downstream, often in combination with the persistently e
of the so-called “realizator genes.” Realizators are the molecules in
combinations determine the structural architecture of large field
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134,135). The number of Hox targets has recently
been proposed to be exceptionally numerous (136).
However, only a limited number of candidate down-
stream genes have been determined to be directly
under Hox control (137).

Recent experiments have provided clues for our
understanding of the molecular logic of Hox target
gene selection. It seems likely that Hox proteins can
independently activate or repress many genes that
function at different levels of the hierarchy leading
from a Hox protein to a unique morphology (Fig. 5B).
Thus, Hox proteins can directly control not only
transcription factors that are still high in the regu-
latory pathway, but also genes for signaling proteins
and other “realizator” functions (138). Moreover,
many genes can apparently serve as direct targets
for several Hox proteins (136,139). In order to un-
derstand how different Hox genes instruct one ho-
mologous structure to be different from another, we
will have to know both the spectrum of their target
genes and the architecture of their regulatory path-
ways.

multiple levels of their regulatory hierarchies. Monomer Hox
ch binding is probably neutral and has no effect on target gene
quired to release the covert activation (or repression) potentials
(A, bottom). Examples of known Drosophila cofactors are shown
rotein labeled X indicates that there are likely to be other, as yet
es of evidence (136,138), Hox proteins are involved in target gene
he first tier of Hox downstream genes includes immediate Hox
ctors then activate or repress the genes at the second tier and

sed Hox proteins. This ultimately results in localized expression
in cell migration, adhesion, and differentiation, and their unique

lls.
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Concluding Remarks

These are exciting times for developmental molec-
ular genetics, particularly in the new genes and
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insights that apply to human development. New
discoveries have changed century-old paradigms in
embryology and evolution and have allowed human
medical genetics to become more sophisticated in its
diagnostic and predictive power. In the race for un-
derstanding the molecular basis of disease, simple
model organisms such as Drosophila, C. elegans,
and others will continue to be an indispensable tool
for providing answers relevant for human biology.
At the functional genomic level, the research on
these organisms will provide rich biological annota-
tions when the human genomic sequence is finished,
since fundamental body patterning mechanisms and
the functions of key regulatory molecules have per-
sisted through millions of years of evolutionary
change. The recent technological breakthrough in
gene expression profiling using DNA microarrays
(140), combined with knowledge obtained from the
C. elegans, Drosophila, and human genome se-
quences, will provide incredibly rapid advances in
our understanding of developmental patterning
genes under normal and pathological conditions.
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